Advantages

✓ Short cut-off at 180nm
✓ Large Angle Tolerance
✓ Small Walk-off Angle
✓ No Saturation for High-Power Generation

Typical Specifications

For 266nm
Cut Angle: $\theta = 62.0$ deg., $\phi = 45$ deg.
Dimensions: 5x5x10mm, Both Surfaces: Optically Polished

*Cut angle and dimensions are selectable.

Application

✓ Machining
✓ Micro Processing
✓ Semiconductor Inspection
✓ Bio-Medical
✓ UV-LIDAR

The sole official licensee

Comprehensive set of licensed patents, including material, its application and use
CLBO crystal : JPN #2812427, #2744604 USA #6296784, #5998313 EU #693581, #786542
Application : JPN #4911494 USA #794863 CHN #ZL20078006027.X TWN #I408482

OXIDE Corporation
1747-1 Makihara, Mukawa, Hokuto, Yamanashi 408-0302 JAPAN
Tel: +81-551-26-0022, Fax: +81-551-26-0033
Sales@opt-oxide.com, http://www.opt-oxide.com

Contents are things of 23-Jun-2017
Properties & Sellmeier’s Equations

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>NLO Crystal</th>
<th>Phase Matching Angle (deg)</th>
<th>deff (pm/V)</th>
<th>Angle Tolerance (mrad cm)</th>
<th>Walk-off Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1064+532 = 355</td>
<td>CLBO</td>
<td>48.9</td>
<td>0.71</td>
<td>0.92</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>BBO</td>
<td>34.6</td>
<td>2.01</td>
<td>0.24</td>
<td>4.47</td>
</tr>
<tr>
<td>532+532 = 266</td>
<td>CLBO</td>
<td>62.0</td>
<td>0.79</td>
<td>0.55</td>
<td>1.84</td>
</tr>
<tr>
<td></td>
<td>BBO</td>
<td>47.7</td>
<td>1.75</td>
<td>0.19</td>
<td>4.89</td>
</tr>
<tr>
<td>1064+266 = 213</td>
<td>CLBO</td>
<td>68.3</td>
<td>0.95</td>
<td>0.48</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>BBO</td>
<td>51.1</td>
<td>1.95</td>
<td>0.13</td>
<td>5.51</td>
</tr>
</tbody>
</table>

Remark: PMT = 150 degree-C @CLBO, 27 degree-C @BBO

References

M. Nishioka, A. Kanoh, M. Yoshimura, Y. Mori, and T. Sasaki,
“Growth of CLBO crystals with high laser-damage tolerance”,
Journal of Crystal Growth 279 (2005) 76-81

T. Sasaki, Y. Mori, M. Yoshimura,
“Progress in the growth of a CsLiB₆O₁₀ crystal and its application to ultraviolet light generation”,
Optical Materials, 23 (2003) 343-351

N. Umemura and K. Kato,
“Ultraviolet generation tunable to 0.185 μm in CsLiB₆O₁₀”,
Applied Optics, 36 (1997) 6794-6796